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Chapter 25 

Homology Modeling 
Hanka Venselaar, Elmar Krieger, & Gert Vriend 

INTRODUCTION 
The goal of protein modeling is to predict a structure from its sequence with an accuracy 
that is comparable to the best results achieved experimentally. This would allow users to 
safely use in silico generated protein models in scientific fields where today only 
experimental structures provide a solid basis: structure-based drug design, analysis of 
protein function, interactions, antigenic behavior, or rational design of proteins with 
increased stability or novel functions. Protein modeling is the only way to obtain 
structural information when experimental techniques fail. Many proteins are simply too 
large for NMR analysis and cannot be crystallized for X-ray diffraction. 

Among the three major approaches to 3D structure prediction described in this 
and the following two chapters, homology modeling is the "easiest" approach based on 
two major observations: 
• The structure of a protein is uniquely determined by its amino acid sequence (Epstain 

et al.  1963),and therefore the sequence should, in theory, contain suffice information 
to obtain the structure. 

• During evolution, structural changes are observed to be modified at a much slower 
rate than sequences. Similar sequences have been found to adopt practically identical 
structures while distantly related sequences can still fold into similar structures. This 
relationship was first identified by Chothia & Lesk (Chothia et al.  1986) and later 
quantified by Sander & Schneider (Sander et al.  1991) as summarized in Figure 1. 
Since the initial establishment of this relationship, Rost et al. was able to derive a 
more precise limit for this rule with accumulated data in the PDB (Rost, 1999). Two 
protein sequences are highly likely to adopt a similar structure provided that the 
percentage identity between these proteins for a given length is above the threshold 
shown in Figure 1.  
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Figure 1: The two zones of sequence alignments defining the likelihood of adopting similar 
structures. Two sequences are highly likely to fold into the same structure if their length and 
percentage sequence identity fall into the region above the threshold, indicated with the 
smiling icon (the “safe” zone). The region below the threshold indicates the zone where 
inference of structural similarity can not be made, thus making it difficult to determine if 
model building will be possible. (Figure based on Sander and Schneider, 1991) 
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Figure 3: The limiting steps in homology modeling as function of percentage sequence 
identity between the structure and the model. (Figure based on Rodriguez and Vriend, 1997) 

 
Figure 2. Typical blast output of a model-sequence run against the PDB sequences. Where (Q) 
represents the model-sequence with unknown structure and (S) is the sequence for the PDB 
structure template. 
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When the percentage identity in the aligned region of the structure template and 

the sequences to be modeled falls in the safe modeling zone of Figure 1, a model can be 
built. The identity between the sequences can be obtained by doing a simple BLAST run 
with the sequence of interest, the model-sequence, against the PDB, see Figure 2. The 
sequence that aligns with the model-sequence is called the “template”. In Figure 1 is 
shown that the threshold for safe homology modeling can be as low as 25%, especially 
for longer sequences. However, the quality of the model is dependent on the sequence 
identity and should be considered since sequences with 25% sequence identity tend to 
yield poor structural models with high uncertainty in side chain positioning.   

The impact of identities between the model-sequence and the template on the 
process of protein homology modeling can be broken down as follows. At sequence 
identities greater than 75% protein homology modeling can easily be achieved requiring 
minor manual intervention. Consequently, the time needed to finalize such a model is 
limited only by the interpretation of the model to answer the biological question at hand, 
see Figure 3. The level of accuracy achieved with these models is comparable to 
structures that were solved by NMR. For sequence identities between 50 - 75% more 
time is needed to fine-tune the details of the model and correct the alignment if needed. 
Between 25-50% identity obtaining the best possible alignment becomes the concern in 
the process of homology modeling. Finally, sequence identities lower than 25% often 
mean that no template structure can be detected with a simple BLAST search thus 
requiring the use of more sensitive alignment techniques (see Chapter?? about 
threading), to find a potential template structure.  

In practice, homology modeling is a multi-step process which can be 
summarized as follows: 

1. Template recognition and initial alignment 

2. Alignment correction 

3. Backbone generation  

4. Loop modeling  

5. Side chain modeling 

6. Model optimization 

7. Model validation  

8. Iteration 

These steps are all illustrated in Figure 4 and will be discussed in detail in the rest of this 
chapter. 
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Next page: Figure 4. The process of building a “model” by homology to a “template”. 
The numbers in the plot correspong to the step-numbers in the subsequent section.  
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Decisions need to be made by the modeler at almost every step of this model 

building process. The choices are not always obvious, thus subjecting model building to a 
serious thought about how to gamble between multiple seemingly similar choices. To 
reduce possible errors introduced by a subjective decision making process, algorithms 
have been developed to automate the model building process (Table 1). 

 
Server name URL 
Automatic Homology Modeling Servers 
3D-Jigsaw http://www.bmm.icnet.uk/servers/3djigsaw/ 
CPHModels http://www.cbs.dtu.dk/services/CPHmodels/ 
EsyPred3D http://www.fundp.ac.be/urbm/bioinfo/esypred/ 
Robetta http://robetta.bakerlab.org/ 
SwissModel http://swissmodel.expasy.org/ 
TASSER-lite http://cssb.biology.gatech.edu/skolnick/webservice/tasserlite/index.html
Semi-Automatically Homology Modeling Servers (provide your own alignment) 
HOMER http://protein.cribi.unipd.it/homer/help.html 
WHAT If http://swift.cmbi.kun.nl/WIWWWI/ 

Table 1: A few examples of the online available homology modeling servers.  
 
Current techniques allow modelers to construct models for about 25-65% of the 

amino acids coded in the genome, thereby supplementing the efforts of structural 
genomics projects (Xiang, 2006). This value differs significantly between individual 
genomes, and increases steadily with the continuous growth of the PDB. The remaining 
75-35% of these genomes have no identified template that can be used for homology 
modeling and therefore modelers will need to resort to fold recognition (Chapter ??), ab 
initio structure prediction (Chapter ??), or simply the traditional NMR or X-ray 
experiment to obtain structural data (Chapters ? to ?). While automated model building 
provides a high throughput-solution the evaluation of these automated methods during 
CASP (Chapter ??) indicated that human expertise is still helpful, especially if the 
sequence identity of the alignment is close to the zone of uncertainty regarding the 
feasibility of building a proper model (25% , see Figure 1). (Fischer et al.  1999). The 8 
steps of homology modeling will be discussed in more detail below. 

Step 1 - Template Recognition and Initial Alignment 

Sequences in the safe homology modeling zone (Figure 1) share high percentage 
identity to a possible template and therefore can easily be paired with simple sequence 
alignment programs such as BLAST (Altschul et al.  1990) or FASTA (Pearson, 1990).  

To identify the template, the program compares the query sequence to all the 
sequences of known structures in the PDB using mainly two matrices: 
• A residue exchange matrix (Figure 5). This matrix defines the likelihood that any two 

of the 20 amino acids ought to be aligned. Exchanges between different residues with 
similar physico-chemical properties (for example F->Y) get a better score than 
exchanges between residues that widely differ in their properties. Conserved residues 
generally obtain the highest score. 
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• An alignment matrix (Figure 6). The axes of this matrix correspond to the two 
sequences to be aligned, and the matrix elements are simply the values from the 
residue exchange matrix (Figure 5) for a given pair of residues. During the alignment 
process, one tries to find the best path through this matrix, starting from a point near 
the top left, and going down to the bottom right. To make sure that no residue is used 
twice, one must always take at least one step to the right and one step down. A typical 
alignment path is shown in Figure 6. At first sight, the dashed path in the bottom right 
corner would have led to a higher score. However, it requires the opening of an 
additional gap in sequence A (Gly of sequence B is skipped). By comparing 
thousands of sequences and sequence families, it became clear that the opening of 
gaps is about as unlikely as at least a couple of non-identical residues in a row. The 
jump roughly in the middle of the matrix on the other hand is justified, because after 
the jump we earn lots of points (5,6,5) which otherwise would only have been (1,0,0). 
The alignment algorithm therefore subtracts an "opening penalty" for every new gap 
and a much smaller "gap extension penalty" for every residue that is additionally 
skipped once the gap has already been made. The gap extension penalty is much 
smaller than the gap open penalty because one gap of three residues is much more 
likely than three gaps of one residue each. 

 
 
Figure 5: A typical residue exchange or scoring matrix used by alignment algorithms. 
Because the score for aligning residues A and B is normally the same as for B and A, this 
matrix is symmetric. 

 
Figure 6: The alignment matrix for the sequences VATTPDKSWLTV and 
ASTPERASWLGTA, using the scores from Figure 3. The optimum path corresponding to 
the alignment on the right side is shown in gray. Residues with similar properties are 
marked with a star '*'. The dashed line marks an alternative alignment that scores more 
points but requires to open a second gap. 
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In practice, template structures can be easily retrieved by submitting the query sequence 
to one of the countless BLAST servers on the web, using the PDB as the database to 
search. Usually, the template structure with the highest sequence identity will be the first 
option, see Figure 2, but other considerations should be made. For example, the 
conformational state (i.e. active or inactive), present co-factors, other molecules or 
multimeric complexes will have an impact on model building. Nowadays, the increasing 
amount of CPU power makes it possible to choose multiple templates, build multiple 
models giving the investigator the opportunity to select the best model for further study.  
It has also become possible to combine multiple templates into one structure that is used 
for modeling. The online Swiss-Model and the Robetta servers, for example, use this 
approach (Peitsch et al. 2000 and Kim et al. 2004).  

Step 2 - Alignment Correction 

Having identified one or more possible modeling templates using the initial screen 
described above, more sophisticated methods are needed to arrive at a better alignment. 

Sometimes it may be difficult to align two sequences in a region where the 
percentage sequence identity is very low. A potential strategy is to use other sequences 
from other homologous proteins to find a solution. An example of using this strategy to 
address a challenging alignment is shown in Figure 7. Suppose the sequence LTLTLTLT 
needs to be aligned with YAYAYAYAY. There are two equally poor possibilities, and 
with the use of third sequence, TYTYTYTYT, that aligns easily to the two sequences can 
resolve the issue. 

 
Figure 7: Addressing a challenging alignment problem with homologous sequences. 
Sequences A and B are impossible to align, unless one considers a third sequence C from 
a homologous protein. 
 

The example above introduced a very powerful concept called "multiple sequence 
alignment". Many programs are available to align a number of related sequences, for 
example CLUSTALW (Thompson et al. 1994), and the resulting alignment contains a lot 
of additional information. Think about an Ala->Glu mutation. Relying on the matrix in 
Figure 5, this exchange always gets a score of 1. In the three dimensional structure of the 
protein, it is however very unlikely to see such an Ala->Glu exchange in the hydrophobic 
core, but on the surface this mutation is perfectly normal. The multiple sequence 
alignment implicitly contains information about this structural context. If at a certain 
position only exchanges between hydrophobic residues are observed, it is highly likely 
that this residue is buried. To consider this knowledge during the alignment, one uses the 
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multiple sequence alignment to derive position specific scoring matrices, also called 
"profiles" (Taylor, 1986, Dodge et al.  1998). During the last years, new programs like 
MUSCLE and T-Coffee have been developed that use these profiles to generate and 
refine the multiple sequence alignments. (Edgar, 2004, Notredame et al. 2000) Structure 
based alignments programs, like 3DM, also include structural information in combination 
with profiles to generate multiple sequence alignments. (Folkertsma et al. 2004) The use 
of 3DM on a specific class of proteins can result in entropy vs. variability plots. The 
location of a residue in this plot is directly related to function in the protein. This 
information can in turn be added to the profile and used to correct the alignment or to 
optimize position specific gap penalties.  

When building a homology model, we are in the fortunate situation of having an 
almost perfect profile - the known structure of the template. We simply know that a 
certain alanine sits in the protein core and must therefore not be aligned with a glutamate. 
Multiple sequence alignments are nevertheless useful in homology modeling, for 
example to place deletions or insertions only in areas where the sequences are strongly 
divergent. A typical example for correcting an alignment with the help of the template is 
shown in Figures 8 and 9. Although a sequence alignment gives the highest score for 
alignment 1 in Figure 8, a simple look at the structure of the template reveals that 
alignment 2 is actually a better alignment, because it leads to a small gap, compared to a 
huge hole associated with alignment 1. 
 

 
Figure 9. Correcting an alignment based on the structure of the modeling template (Cα-trace shown 
in black). While the alignment with the highest score (dark gray, also in Figure 8) leads to a big gap 
in the structure, the second option (light gray) creates only a tiny hole. This can easily be 
accommodated by small backbone shifts. 

 
Figure 8. Example of a sequence alignment where a three-residue deletion must be modeled. While 
alignment 1, dark grey, appears better when considering just the sequences (a matching proline at 
position 5), a look at the structure of the template leads to a different conclusion (Figure 9). 
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Step 3 - Backbone Generation 

When the alignment is ready, the actual model building can start. Creating the backbone 
is trivial for most of the model: one simply transfers the coordinates of those template 
residues that show up in the alignment with the model-sequence (see Figure 2). If two 
aligned residues differ, the backbone coordinates for N, Cα, C and O and often also the 
Cβ can be copied. If the side chains are the same they can also be copied to provide an 
initial guess. 

Experimentally determined protein structures are not perfect (but still better than 
models in most cases). There are countless sources of errors, ranging from poor electron 
density in the X-ray diffraction map to simple human errors when preparing the PDB file 
for submission. A lot of work has been spent on writing software to detect these errors 
(correcting them is even harder), and the current count is at more than 25,000,000 errors 
in the approximately 50,000 structures deposited in the PDB by the end of 2007. The 
current PDB-redo and RECOORD projects have resepctively shown that re-refinement of 
X-ray and NMR structures normally improves the quality of the structure, suggesting that 
re-refinement before modeling seems to be a wise option (Joosten R.P. 2007, Nederveen 
A.J. 2005). 

A straightforward way to build a good model is to choose the template with the 
fewest errors (the PDBREPORT database (Hooft et al.  1996) at 
www.cmbi.ru.nl/gv/pdbreport can be very helpful). But what if two templates are 
available, and each has a poorly determined region, but these regions are not the same? 
One should clearly combine the good parts of both templates in one model - an approach 
known as multiple template modeling. (The same applies if the alignments between the 
model sequence and possible templates show good matches in different regions). 
Although this is simple in principe (and used by automated modeling servers like Swiss-
Model (Peitsch et al. 2000)), it is hard in practice to achieve results that are closer to the 
true structure than all the templates. Nevertheless the feasibility of this strategy has 
already been demonstrated by Andrej Šali's group in CASP4 (Chapter ??).  

One extreme example of a program that combines multiple templates is the 
Robetta server. This server uses several different algorithms to predict domains in the 
sequence. The regions of the model-sequence that contain a homologous domain in the 
PDB are modeled while those parts without are predicted de novo by using the Rosetta 
method. This method compares small fragments of the sequence with the PDB and inserts 
them with the same local conformation into the model.  The Robetta server can generate 
models of complete sequences even without a known template (Kim et al. 2004). 
Skolnick’s TASSER follows a same strategy but combines larger fragments, found by 
threading, and folds them into a complete structure (Zhang and Skolnick, 2004). 

Step 4 - Loop Modeling 

For the majority of homology model building cases, the alignment between model 
and template sequence contains gaps. Either in the model sequence (deletions as shown in 
Figures 8 and 9), or in the template sequence (insertions). Gaps in the model-sequence 
are addressed by simply omitting residues from the template, thus creating a hole in the 
model that must be closed. Gaps in the template sequences are treated by inserting the 
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missing residues into the continuous backbone. Both cases imply a conformational 
change of the backbone. The good news is that conformational changes often do not 
occur within regular secondary structure elements. Therefore it is often safe to shift all 
insertions or deletions in the alignment out of helices and strands and place them in 
structural elements that can accommodate such changes in the alignment such as loops 
and turns. The bad news is that changes in loop conformation are notoriously hard to 
predict (a big unsolved problem in homology modeling). To make things worse, even 
without insertions or deletions a number of different loop conformations can be observed 
between the template and model. Three main reasons for this difficulty can be attributed 
to the following reasons (Rodriguez et al. 1997): 
• Surface loops tend to be involved in crystal contacts and therefore a significant 

conformational change is expected between the template in crystal form and the final 
model structure modeled in the absence of crystallization constraints. 

• The exchange of small to bulky side chains underneath the loop induces a structural 
change by pushing it away from the protein. . 

• The mutation of a loop residue to proline or from glycine to any other residue will 
result in a decrease in conformational flexibility. In both cases, the new residue must 
fit into a more restricted area in the Ramachandran plot, which normally requires a 
conformational change of the loop. 

There are three main approaches to model loops: 
• Knowledge based: A search is made through the PDB for known loops containing 

endpoints that match the residues between which the loop is to be inserted. The 
identified coordinates of the loop are then transfered. All major molecular modeling 
programs and servers support this approach (e.g. 3D-Jigsaw (Bates et al.  1999), 
Insight (Dayringer et al.  1986), Modeller (Sali et al.  1993), Swiss-Model (Peitsch et 
al. 2000) or WHAT IF (Vriend, 1990)).  

• In between or hybrid: the loop is divided in small fragments that are all separately 
compared to the PDB. This strategy has been described earlier as implemented for the 
Rosetta method (Kim et al., 2004). The local conformation of all small fragments 
results in an ab initio modeled loop but is still based on known protein structures. 
This method is reminiscent of the very old ECEPP software by the Scheraga group 
(Zimmerman et al. 1977).  

• Energy based: as in true ab initio fold prediction, an energy function is used to judge 
the quality of a loop. This is followed by a minimalization of the structure, using 
Monte Carlo (Simons et al.  1999) or molecular dynamics techniques (Fiser et al.  
2000) to arrive at the best loop conformation. Often the energy function is modified 
(e.g. smoothed) to facilitate the search (Tappura, 2001). 

For short loops (up to 5-8 residues), the various methods have a reasonable 
chance of predicting a loop conformation close to the true structure. As mentioned above, 
surface loops tend to change their conformation due to crystal contacts. So if the 
prediction is made for an isolated protein and then found to differ from the crystal 
structure, it might still be correct. 
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Step 5 - Side Chain Modeling 

When we compare the side chain conformations ("rotamers") of residues that are 
conserved in structurally similar proteins, we find that they often have similar χ1-angles 
(i.e. the torsion angle about the Cα-Cβ bond). It has been shown by Summers et al. that in 
homologous proteins (over 40% identity) at least 75% of the Cγ occupy the same 
orientation (Summers et al. 1987). It is therefore possible to simply copy conserved 
residues entirely from the template to the model (see also Step 3) and achieve a very good 
starting point for structure optimisation. In practice, this rule of thumb holds only at high 
levels of sequence identity, when the conserved residues form networks of contacts. 
When they get isolated (<35% sequence identity), the rotamers of conserved residues 
may differ in up to 45% of the cases (Sanchez et al.  1997). 

In practice, all successful approaches to side chain placement are at least partly 
knowledge based. Libraries of common rotamers extracted from high resolution X-ray 
structures are often used to position side chains. The various rotamers are successively 
explored and scored with a variety of energy functions. Intuitively, one might expect 
rotamer prediction to be computationally demanding due to the combinatorial explosion 
of the search space - the choice of a certain rotamer automatically affects the rotamers of 
all neighboring residues, which in turn affect their neighbors and the effect propagates 
continuously. For a sequence of 100 residues and an average ~5 rotamers per residue, the 
rotamer space would yield 5100 different possible conformations to score. Significant 
research efforts have been invested to develop algorithms to address this issue and make 
the search through the rotamer conformation space more tractable (e.g. Desmet et al. 
1992, Canutescu et al. 2003). 

Aside from directly extracting conserved rotamers from the template, the key to 
handling the combinatorial explosion of conformational possibilities lies in the protein 
backbone. Instead of using a “fixed” library that stores all possible rotamers for all 
residue types, an alternative ”position specific” library can be used. These libraries utilize 
information contained in the backbone to select the correct rotamer. A simple form of a 
position specific library classifies the backbone based on secondary structure since 
residues found in helices often favor a rotamer conformation that is not observed in 
strands or turns. More sophisticated position specific libraries can be built by classifying 
the backbone according to its Phi/Psi angles or by analyzing high resolution structures 
and collecting all stretches of 5 to 9 residues (depending on the method) with reference 
amino acid at the center of the stretch. These collected examples in the template are 
superposed on the corresponding backbone to be modeled. The possible side chain 
conformations are selected from the best backbone matches (Chinea et al. 1995). Since 
certain backbone conformations will be strongly favored for certain rotamers to be 
adopted (allowing for example a hydrogen bond between side chain and backbone) this 
strategy greatly reduces the search space. For a given backbone conformation, there may 
be a residue that strongly populates a specific rotamer conformation and therefore can be 
modeled immediately. This residue would then serve as an anchor point to model 
surrounding side chains that may be more flexible and adopt a number of other 
conformations. An example for a backbone conformation that favors two different 
tyrosine rotamers is shown in Figure 10. Position-specific rotamer libraries are widely 
used today for drug docking purposes to visualize all possible shapes of the active site (de 
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Filippis et al. 1994, Stites et al. 1994, Dunbrack et al. 1994). The study by Chinea et al. 
shows that the search space is even considerably smaller than assumed by Desmet et al. 

 

 

Figure 10. Example of a 
backbone-dependent rotamer 
library. The current backbone 
conformation favors two 
different rotamers for 
Tyrosine (shown as sticks) 
which appear about equally 
often in the database. 
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Although search space for rotamer prediction initially presented a combinatorial 

problem to be explored exhaustively, it is far smaller than originally believed as 
evidenced in a study conducted in 2001. Xiang and Honig first removed a single side 
chain from known structures and re-predicted it. In a second step, they removed all the 
side chains and added them again using the same method. Surprisingly, it turned out that 
the accuracy was only marginally higher in the much easier first case (Xiang et al.  2001). 

Rotamer prediction accuracy is usually quite high for residues in the hydrophobic 
core where more than 90% of all χ1-angles fall within ±20° from the experimental values, 
but much lower for residues on the surface where the percentage is often even below 
50%. There are three reasons for this: 
• Experimental reasons: flexible side chains on the surface tend to adopt multiple 

conformations, which are additionally influenced by crystal contacts. So even 
experiment cannot provide one single correct answer. 

• Theoretical reasons: the energy functions used to score rotamers can easily handle the 
hydrophobic packing in the core (mainly Van der Waals interactions). The calculation 
of electrostatic interactions on the surface, including hydrogen bonds with water 
molecules and associated entropic effects, is more complicated. Nowadays, these 
calculations are being included in more force fields that are used to optimize the 
models (Vizcarra et al. 2005).  

• Biological reasons: loops on the surface often adopt different conformations as part of 
the biological function, for example to let the substrate enter the protein. 

It is important to note that the rotamer prediction accuracies given in most 
publications cannot be reached in real-life applications. This is simply due to the fact that 
the methods are evaluated by taking a known structure, removing the side chains and re-
predicting them. The algorithms thus rely on the correct backbone, which is not available 
in homology modeling since the backbone of the template often differs significantly from 
the model structure. The rotamers must thus be predicted based on a "wrong" backbone 
and reported prediction accuracies tend to be higher than what would be expected for the 
modeled backbone. 

Step 6 - Model Optimization 

The problem of rotamer prediction mentioned above leads to a classical "chicken and 
egg" situation. To predict the side chain rotamers with high accuracy, we need the correct 
backbone, which in turn depends on the rotamers and their packing. The common 
approach to address this problem is to iteratively model the rotamers and backbone 
structure. First, we predict the rotamers, then remodel  the backbone to accommodate 
rotamers, followed by a round of refitting the rotamers to the new backbone. This process 
is repeated until the solution converges. This boils down to a series of rotamer prediction 
and energy minimization steps. Energy minimization procedures used for loop modeling 
is applied to the entire protein structure, not just an isolated loop. This requires an 
enormous accuracy in the energy functions used, because there are many more paths 
leading away from the answer (the target structure) than towards it. That is why energy 
minimization must be used carefully. At every minimization step, a few big errors (like 
bumps, i.e. too short atomic distances) are removed while at the same time many small 



Wiley STM / Editor: Book Title,  
Chapter ?? / Authors?? / filename: ch??.doc 

page 15

errors are introduced. When the big errors are gone, the small ones start accumulating and 
the model moves away from the target, see Figure 11.  

 
 

As a rule of thumb, today's modeling programs therefore either restrain the atom 
positions and/or apply only a few hundred steps of energy minimization. In short, model 
optimization does not work until energy functions (force fields) become more accurate. 
Two ways to achieve better energetic models for energy minimization are currently being 
pursued: 
• Quantum force fields: protein force fields must be fast to handle these large 

molecules efficiently, energies are therefore normally expressed as a function of the 
positions of the atomic nuclei only. The continuous increase of computer power has 
now finally made it possible to apply methods of quantum chemistry to entire 
proteins, arriving at more accurate descriptions of the charge distribution (Liu et al.  
2001). It is however still difficult to overcome the inherent approximations of today's 
quantum chemical calculations. Attractive Van der Waals forces are for example so 
hard to treat, that they must often be completely omitted. While providing more 
accurate electrostatics, the overall accuracy achieved is still about the same as in the 
classical force fields. 

• Self-parameterizing force fields: the accuracy of a force field depends to a large 
extent on its parameters (e.g. Van der Waals radii, atomic charges). These parameters 
are usually obtained from quantum chemical calculations on small molecules and 
fitting to experimental data, following elaborate rules (Wang et al. 2000). By 
applying the force field to proteins, one implicitly assumes that a peptide chain is just 

 
Figure 11: The average RMSD between models and the real structures during an extensive energy 
minimization of 14 homology models with two different force fields. Both force fields improve 
the models during the first ~500 energy minimization steps but then the small errors sum up in the 
classic force field and guide the minimization in the wrong direction, away from the target while 
the self-parameterizing force field goes in the right direction. To reach experimental accuracy, the 
minimization would have to proceed all the way down to ~0.5 Å which is the uncertainty in 
experimentally determined coordinates. 
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the sum of its individual small molecule building blocks - the amino acids. 
Alternatively, one can just state a goal - e.g. improve the models during an energy 
minimization - and then let the force field parameterize itself while trying to 
optimally fulfill this goal (Krieger et al.  2002, Krieger et al. 2004). This leads to a 
computationally rather expensive procedure. Take initial parameters (for example 
from an existing force field), change a parameter randomly, energy minimize models, 
see if the result improved, keep the new force field if yes, otherwise go back to the 
previous force field. With this procedure, the force field accuracy increases enough to 
go in the right direction during an energy minimization (Figure 11), but experimental 
accuracy is still far out of reach. 

The most straightforward approach to model optimization is to simply run a 
molecular dynamics simulation of the model. Such a simulation follows the motions of 
the protein on a femtosecond (10-15 s) timescale and mimics the true folding process. One 
thus hopes that the model will complete its folding and converges to the true structure 
during the simulation. The advantage is that a molecular dynamics simulation implicitly 
contains entropic effects that are otherwise hard to treat; the disadvantage is that the force 
fields are again not accurate enough to make it work. 

 
Different distributed computing projects, folding@home 

(http://folding.stanford.edu), Rosetta@home (http://boinc.bakerlab.org/rosetta/), 
Models@home (http://www.cmbi.kun.nl/models), have been developed to use many 
personal computers in a network to run molecular dynamics simulations and to mimic 
protein folding. Model optimization becomes more and more important. Even the focus 
of the CASP competition (see chapter??) is changing to a comparison of the optimization 
of initial models provided by these online servers instead of building the initial models 
from scratch. 

Step 7 - Model Validation 

Every protein structure contains errors, and homology models are no exception. The 
number of errors (for a given method) mainly depends on two values: 

 

• The percentage sequence identity between template and model-sequence. If it is 
greater than 90%, the accuracy of the model can be compared to crystallographically 
determined structures, except for a few individual side chains (Chothia et al. 1986, 
Sippl, 1993). From 50% to 90% identity, the root mean sqaure error in the modeled 
coordinates can be as large as 1.5 Å, with considerably larger local errors. If the 
sequence identity drops to 25%, the alignment turns out to be the main bottleneck for 
homology modeling, often leading to very large errors rendering it a meaningless 
effort to model these regions, see also Figure 3. 

• Errors in the template structure can be reduced by an additional re-refinement of the 
template structure as mentioned earlier. Errors in a model become less of a problem if 
they can be localized. For example, a loop located distantly from a functionally 
important region such as the active site of an enzyme can tolerate some inaccuracies. 
Nertheless, it is in the best interest to model all regions as accurately as possible since 
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seemingly unimportant residues may be important for protein-protein interactions or a 
yet unassigned function.  

 
There are two principally different ways to estimate errors in a structure: 

a) Calculating the model's energy based on a force field: This checks if the bond 
lengths and bond angles are within normal ranges, and if there are lots of clashing side 
chains in the model (corresponding to a high Van der Waals energy). Essential questions 
like "Is the model folded correctly?" cannot yet be answered this way, because 
completely misfolded but well minimized models often reach the same force field energy 
as the target structure (Novotny et al.  1988). This is mainly due to the fact that molecular 
dynamics force fields are lacking several contributing terms to the energy function, most 
notably those related to salvation effects and entropy. 

b) Determination of normality indices that describe how well a given 
characteristic of the model resembles the same characteristic in real structures. Many 
features of protein structures are well suited for normality analysis. Most of them are 
directly or indirectly based on the analysis of interatomic distances and contacts. Some 
published examples are:  
• General checks for the normality of bond lengths, bond- and torsion angles (Morris et 

al.  1992, Czaplewski et al.  2000) are good checks for the quality of experimentally 
determined structures, but are less suitable for the evaluation of models because the 
better model building programs simply do not make this kind of errors.  

• Inside/outside distributions of polar and apolar residues can be used to detect 
completely misfolded models (Baumann et al.  1989). 

• The radial distribution function for a given type of atom (i.e. the probability to find 
certain other atoms at a given distance) can be extracted from the library of known 
structures and converted into an energy-like quantity, called a "potential of mean 
force" (Sippl, 1990). Such a potential can easily distinguish good contacts (e.g. 
between a Cγ of valine and a Cδ of isoleucine) from bad ones (e.g. between the same 
Cγ of valine and the positively charged amino group of lysine). 

• The direction of atomic contacts can also be accounted for in addition to interatomic 
distances. The result is a three dimensional distribution of functions, that can also 
easily identify misfolded proteins and are good indicators of local model building 
problems (Vriend et al.  1993).  

Most methods used for the verification of models can also be applied to experimental 
structures (and hence to the templates used for model building). A detailed verification is 
essential when trying to derive new information from the model, either to interpret or 
predict experimental results or plan new experiments. 

Step 8 - Iteration 

When errors in the model are recognized and located, they can be corrected by iterating 
portions of the homology modeling process. Small errors that are introduced during the 
optimization step can be removed by running a shorter molecular dynamics simulation. A 
error in a loop can be corrected by choosing another loop conformation in the loop 
modeling step. Large mistakes in the backbone conformation sometimes require the 
complete process to be repeated with another alignment or even with a different template.  
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In summary, it is safe to say that homology modeling is unfortunately not as easy 

as stated in the beginning. Ideally, homology modeling also uses threading (Chapter ??) 
to improve the alignment, ab initio folding (Chapter ??) to predict the loops and 
molecular dynamics simulations with a perfect energy function to converge onto in to the 
true structure. Doing all this correctly will keep researchers busy for a long time, leaving 
lots of fascinating discoveries. 
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